3.442 \(\int \frac{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}}{x^2 (d+e x)} \, dx\)

Optimal. Leaf size=137 \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e}} \]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/
(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.142182, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {849, 806, 724, 206} \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/
(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx &=\int \frac{a e+c d x}{x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac{\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e}\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}+\frac{\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{a d e}\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e}}\\ \end{align*}

Mathematica [A]  time = 0.144192, size = 117, normalized size = 0.85 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\left (a e^2-c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )}{\sqrt{a} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}}-\frac{\sqrt{d}}{x}\right )}{d^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-(Sqrt[d]/x) + ((-(c*d^2) + a*e^2)*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a
]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/d^(3/2)

________________________________________________________________________________________

Maple [B]  time = 0.061, size = 594, normalized size = 4.3 \begin{align*} -{\frac{a{e}^{3}}{2\,{d}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{ce}{2}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{a{e}^{2}}{2\,d}\ln \left ({\frac{1}{x} \left ( 2\,ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+2\,\sqrt{ade}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ) } \right ){\frac{1}{\sqrt{ade}}}}+{\frac{e}{{d}^{2}}\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) }}+{\frac{a{e}^{3}}{2\,{d}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}}-{\frac{ce}{2}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}}-{\frac{1}{a{d}^{2}ex} \left ( ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2} \right ) ^{{\frac{3}{2}}}}+{\frac{c}{ae}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{cd}{2}\ln \left ({\frac{1}{x} \left ( 2\,ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+2\,\sqrt{ade}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ) } \right ){\frac{1}{\sqrt{ade}}}}+{\frac{cx}{ad}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x)

[Out]

-1/2*e^3/d^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(
1/2)*a+1/2*e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(
1/2)*c+1/2*e^2/d*a/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))/x)+e/d^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+1/2*e^3/d^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d
*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)*a-1/2*e*ln((1/2*a*e^2-1/2*c*d^2
+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)*c-1/d^2/a/e/x*(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/a/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c-1/2*d/(a*d*e)^(1/2)*ln((2*a
*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c+1/d*c/a*(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(1/2)*x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.56704, size = 755, normalized size = 5.51 \begin{align*} \left [-\frac{4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} a d e +{\left (c d^{2} - a e^{2}\right )} \sqrt{a d e} x \log \left (\frac{8 \, a^{2} d^{2} e^{2} +{\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{a d e} + 8 \,{\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right )}{4 \, a d^{2} e x}, -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} a d e -{\left (c d^{2} - a e^{2}\right )} \sqrt{-a d e} x \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{-a d e}}{2 \,{\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} +{\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right )}{2 \, a d^{2} e x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*a*d*e + (c*d^2 - a*e^2)*sqrt(a*d*e)*x*log((8*a^2*d^2*e^2
+ (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 +
a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2))/(a*d^2*e*x), -1/2*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*a*d*e - (c*d^2 - a*e^2)*sqrt(-a*d*e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2
*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)))/(a*d^2*
e*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**2/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError